Collaborative Vocal Puppetry Multi-User Performative Voice Synthesis on Distributed Platforms @ eNTERFACE 2011

Nicolas d'Alessandro¹, Thierry Dutoit², Maria Astrinaki², Johnty Wang¹, Onur Babacan², Àngel Calzada Defez³

MAGIC - University of British Columbia (Vancouver)

² NUMEDIART Institute - University of Mons (Belgium)

³ La Salle - Universitat Ramón Llull (Spain)

Performative Speech Synthesis providing artificial speech technologies vs. providing artificial speaking systems

- text-to-speech (TTS) based on non-uniform unit selection (NUU) is the ultimate technology for providing high-quality speech waveforms - period, thank you:)
- it leads to a well-established but rather limited set of apps where the reading of some available text is the goal;
- but it does not make the conception of an *artificial speaker* much easier than back in the days of DECTalk, well actually it makes it harder (black-box design, time scales issues);
- the *artificial speaker* as a system: realtime, reactive, interactive, listener-specific, context-aware, ubiquitous,... many aspects which require a different perspective.

exploring... based on the two most promising approaches we have so far

- 1) bio-mechanical modelling
- 2) statistical parametric modelling

Starting Points

two promising but non-adapted, totally non-reactive systems: HTS and Artisynth

HTS

Artisynth

I think we went over the hill... we reached convincing reactivity for both

MAGE

HTS: HMM-Based Speech Synthesis

- input = full text to be converted
- parsing text into labels containing full contextual linguistic information
- select created decision trees and PDFs from the database
- generate spectrum, pitch and duration trajectories, optimized for the whole label target
- generate speech in a file

pHTS: Breaking the loop

- sequential input of labels containing minimal contextual linguistic information
- delay of only one label to preserve coarticulation
- select created decision trees and PDFs from the database
- generate spectrum, pitch and duration trajectories for one label
- generate one buffer of audio

MAGE: Ready for reactive software

- thread-safe interface between the synthesizer and I/Os: labels and audio samples (lock-free)
- realtime access to the internal state of the engine: each step of the statistical modelling + prosody
- engine-independent

Reactive Natural Language Processing

HTS training

using full contextual linguistic information (from phonemes to complete utterance)

pHTS/MAGE training

using minimum contextual linguistic information reduced only to past and present phonemes and syllables

Reactive Natural Language Processing

• phoneme:

- {before previous, previous, current, next, next next}
- position of current phoneme in current syllable

• syllable:

- number of phonemes at {before previous, previous, current, next, next next}
- accent of {before previous, previous, current, next, next next}
- stress of {before previous, previous, current, next, next next}
- position of current syllable in current word
- number of {preceding, succeeding} stressed syllables in current phrase
- number of {preceding, succeeding} accented syllables in current phrase
- number of syllables (from previous, to next) stressed syllable
- -number of syllables (from previous, to next) accented syllable
- vowel within current syllable

• word:

- guess at part of speech of {preceding, current, succeeding} word
- number of syllables in {preceding, current, succeeding} word
- position of current word in current phrase
- number of {preceding,succeeding}content words in current phrase
- number of words (from previous, to next) content word

• phrase:

- number of syllables in {preceding, current, succeeding} phrase
- position in major phrase
- -ToBI7 endtone of current phase

• utterance:

- number of syllables in current utterance

• phoneme:

- {before previous, previous, current, next, next next}
- position of current phoneme in current syllable

• syllable:

- number of phonemes at {before previous, previous, current, next, next next}
- accent of {before previous, previous, current, next, next next}
- number of syllables (from previous, to current) accented syllable
- number of syllables {to next} accented syllable : random
- vowel within current syllable

• word:

- No information
- phrase:
 - No information
- utterance:
 - No information

Chunk Composer

double-tap sends the chunk

Chunk Turntable

double-tap stresses the vowel chunk is sent when head hits

HandSketch

fan diagram: control through angle and radius

angle ~ pitch variation radius ~ speed variation

pen: pressure and tilt + buttons

pressure ~ volume tilt ~ vocal tract size button #1 ~ abs/rel pitch button #2 ~ gate tilt

FEM Tongue

Game

- simple language to tell directions, colours and validate action or not
- one user is instructed to move coins by other who is talking through the device
- we record all trajectories achieved by the "instructor" and time to achieve the task

Game

WORD	MEANING	GESTURE
ale	red	back open/middle closed/front open
ela	blue	front open/middle closed/back open
lau	up	back closed/back open/back closed
lua	down	back open/back closed/back open
lea	left	front closed/front open/back open
lae	right	back closed/back open/front open
ea	yes	front closed/back open
ua	no	back closed/back open

Team

Johnty Wang

Thierry Dutoit

Àngel Calzada

Maria Astrinaki

Onur Babacan

thanks for your attention come and see/try our demos

